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TEC HNICA L M EM()IRANDUM X _64833

CMG-INDUCED LST DYNAMICS

INTRODUCTION

The nature of the control moment gyroscope (CMG) output gimbal bear-

ing friction has been the subject of many discussions and presentations by

various investigators. It is important to know the precise nature of the torque

caused by the bearing friction so that its effect on the dynamic behavior of the

Large Space Telescope (LST) and its pointing and control system (PCS) can be

predicted. The objective of the analysis and supporting computer simulations

reported herein is to study the effect of the assumed CMG nonlinearity upon

the system dynamics in order to develop an understanding of the nature and

effect of variations of numerical values of parameters upon the system. The

weakness of the mathematical analysis used results from the need to restrict

the complexity of the model studied; however, the design insight obtained is
valuable.

The parameter plane analysis technique used herein makes use of the

describing function to portray the nonlinearity representing CMG gimbal bearing

friction. Where the describing function is a complex value, the technique

developed for a system containing two nonlinearities may be applied [ 1]. This

technique affords both analytic and graphic portrayal of the effects of variations

in selected system parameters. With few exceptions (noted herein) the results

are confirmed with analogue computer simulation.

Finally, the reader is cautioned against relying solely on computer

simulations without adequate mathematical analysis as a background. An

attempt to use an analogue computer to define stability boundaries for satellite

dynamics as characterized by the Mathieu equation should convince even the

skeptic of the weakness of computer simulation when not augmented by mathe-

matical analysis. A current example in the field of digital simulation is the

errors contained in Connell's paper [2] reported by Schiehlen [3].

The following four models are considered in this report; three of them

are analyzed in detail.

+

I

+



1. A model developed by the Bendix Corporation and presented to MSFC

in April 1972 [4-6] 1'2. A single axis representation of the CMG, rate gyro,

and rigid boely dynamics is shown in Figure 1.

r- ....... 7

I " I

.ft 
I I immi w i i J

I
I
L.

RATE
GYRO

Figure 1. Bendix model number 1.

2. A Sperry model (Fig. 2) presented l_ MSFC in December 1972.

3. Another Bendix model presented in March 1973 (Fig. 3).

4. The model developed by Dr. P. R. Dahl of Aerospace Corporation

(the so-called Dahl model). This model may be incorporated in a single Pxis
representation (Fig. 4), where the nonlinear relation between the frictional

torque (Tf) about the CMG output gimbal pivot and the gimbal rotation (5)

is portrayed as the nonlinearity N.

by Dahl, of this relation is

_'f = y5

The mathematical description, develooed

Q

1. CMG Considerations for HEAO and High Accuracy Point Missions. Written

Presentation Material0 Bendix Corp. Teterboro_ N.J., April 21, 1972.

2. Whitley, G.W.: LST Fine Pointing Control System Design'. MSFC S&E-

ASTR-SD-78-72 Letter, Oct. 3, 1972.
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Figure 3. Bendkx model number 2.

TM I

x_'xl _s

where

Figure 4. Single-axis model.

dTf

Y - d--8" : _'(Tt _n (_ - "rGvo)" (2)
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and is sho_,n in F_gure 5, where T and TGF ° are parameters describing the

friction relationship and the overdot represents differentiation with respect to

time.

, L

\
TF $,lLm

TGFO

7 -I _FT-I
-I__J L__ , a Tf

Figure 5. CMG IrLctionnoixIinearitya la Dahl. ,,

ANALYSI S TECHNIQUE

e

J
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The objective of the analyses presented herein is to determine stability

,'ondittons ior systems that may be represented schematically, as in Figure 6.

The plant under consideration is represented by a linear pert G(s) and a non-

linear ele_.ent N. In the sequel N will t)e used to represent the nonlinear

friction characteristics of the CMG g:mbal pivot. In particular it is of interest

to investigate the possibility of existence of limit cycles and to determine their
characteristics. As used herein the _er,n "limit cycle" will be used synono-

mously with the term "selJ_-excited sustained oscillation." Hence, a limit

5



Figure 6. Basic r.,,nlinear system.

cycle represent,_: . steady-state oscillation to which or from which all neigh-

boring trajectories in a state space will converge or diverge [7,8]. The

stability of limit cycles may be defined in terms of three classes:

1. Stable (Orbitally Stable) Limit Cycle -- If all neighboring state

space trajectories converge to the limit cycle.

2. Unstable (Orbitally Unstable) Limit Cycle -- If all neighboring

s_ate space trajectories diverge Irom the limit cycle.

3. Semistab_.e (Orbitally Semistable) Limit Cycle -- If state-space

trajectories originating at points outside the limit cycle converge to it and

thos _ originating from points inside the limit cycle diverge from it, or vice

versa,

Because of the low pass nature of the linear parts of the system plants

under consideration, they are particularly amenable to analysis through

application ot describing function theory. Hence a detailed discussion of

appropriate describing functions is needed [9]. It is assumed that, if a
sustained oscillation occurs, the input x i_ _escribed by

x = A sin 12t . (3)

T*.is assumed that the output f(x) ts approximated by the relation

f(x) _ NA sin (_t+ _)t , (4)

where _ represents a phase shift.

6

..... p ........................



The method of analysis used is defined in Reference 1 and embodies a

describing function technique developed by Siljak [ 10]. It is assumed that the

system being analyzed is amenable to describing function analysis and the

system parameters are time-invariant. In essence, a describing function (N)

is used to represent the nonlinearity. The characteristic equation representing

the system is then obtained. For a limit cycle to occur, it is required that all

characteristic equation roots have negative real parts except for one pair of

roots which must be purely imaginary roots. This condition is determined

mathematically and for ease of visualization may be portrayed graphically. In

the latter case, two adjustable parameters are selected, at least one of which

must also contain N. (If N is a complex quantity, its real and imaginary

components may be.. used as the two parameters and Reference 1 may be applied

directly.) A corr¢'lation between these parameters and the roots of the charac-

teristic equation is then determined by mapping stability contours from the

complex s-plane onto the chosen parameter plane. For the systems considered

herein, only three (and sometimes fewer) such stability boundaries exist and

they are easily found.

The first boundary (the one associated with real roots of the charac-

teristic equation) is found by setting s = 0 in the characteristic equation.

(Graphically this boundary may be identified by single hachures. ) The second

o_e (the one associated _ith purely imaginary roots) is found by setting

s = i_. (This boundary is identified by cross-hachures.) The third one, called

the boundary at infinity (in topological mapping from the complex s-plane to the

Riemann sphere, it is associated with the sphere's north pole), is found by

setting 1/s = 0 in the characteristic equation. It also is identified by single

hachures. From these boundaries, the stable region (if it exists) may be

determined in terms of the selected adjustable parameters, for they bound the

stabh' region.

The nonlinear locus of N as a function of the two adjustable parameters
is determined next. The simultaneous solution of the nonlinear locus relation

and the purely imaginary root boundary yields the condition for a limit cycle,

assuming the indicated solution occurs adjacent to a stable region (which may

not always be the case). This is readily apparent on the parameter plane as

the intersection between the purely imaginary root boundary and the nonlinear

locus. From this point of intersection, the frequency (identified as a_-- _2) and

magnitude (A) of an indicated limit cycle may be determined as a function of

the characteristics of the nonlinearity and of the adjustable parameters.

Further, the behavior of the limit cycle when a small perturbation is applied to

its amplitude, and, hence, the nature of limit cycle stability, also is apparent

on the parameter plane.



ANALYSIS OF BENDIX MODEL NUMBER I(Fig.I)

Four variations of Bendix model number 1 were studied and are identified

herein as Cases I through IV:

1. Case I -- This model consists of a perfect attitude rate sensor

characterized by

R(s) : I C5)

and a CMG characterized by the nonlinear element N and a first order trans-
fer function

cO

Co(s)- cs + _ " (6)
C

This is the basic model considered.

2. Case II -- A model characterized by a perfect attitude rate sensor,
equation (5), and a CMG modeled as a nonlinear element N and a second

order transfer function

KG

Go(s) = sZ+gl s+g0 (7)

The effect of a higher order model of the CMG is induced by comparing the

results of the analyses of Cases I and II. It is similar to several models con-
tained in the documents cited in References 4 and 5 and footnote 2.

3. Case III -- A model consisting of an imperfect attitude rate sensor
described by a first order transfer function

8

n(s) : ---_- C8)
S-t00

g
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and a first order characterization of the linear portion of the CMG, equation

(6). This model permits an analysis of the effect of a nonperfect attitude rate

sensor. It is the model documented in Reference 6 and footnote 2.

4. Case IV -- An imperfect attitude rate sensor, equation (8), and a

second order characterization of the linear portion of the CMG, equation (7).
This model is similar to several models documented in References 4 and 5.

Because the precise nature of the relationship between the input (x) to

the ::onlinear element (N) of the CMG model and the output f(x) is obscure,

the effect of variations of the parameters describing that relationship is studied.

In particular it is desired to predict whether or not sustained oscillations in

the vehicle's attitude and attitude rate will occur and, if so, what their charac-

teristics are (in terms of amplitude, period, and stability) under various

prescribed conditions.

Basic Nonlinearity

If the small overshoots occurring at x = D and

ignored, the describing function is

x= - D (Fig. 1) are

(_-. =: 1 - _- 1 - sin-lu + I -

(ga)

= m , u > 1 . (gb)

For small values of m (m << k), the relation approximated by the ¢ieseribing

function defined in equations (9) then becomes

k = I - r sin-tu + I - u , u < I (lOa)

-- o , u > I (IOb)

9

s



wilere

and

d. D

u = X" ' (Ioc)

d. Dk

" M "

Although the describi|_ function may be found in a numbe:" of texts on nonlinear

oscillations, this author was unable to hx-ate a sketch of the variation of the

deseribil,_ function N with variations in the parameters A, 1), M, anti k. By

selecting combinations of these parameters in a certain way, an interesting

analogy between this particular describing function and a system familiar to

coati'el systcIll engineers was discovered. Symbols 1), hl, and k arc described

on Figure 1; I) represents tile dead zone, anti M and slope k characterize tilt'

gain through N, If N k is plotted versus A D with _, as an independent param-

eter (Fig. 7), it is observed that all curves begin from a CO;l|llloll point at

N k _ 0 for A/D :- I and asymptotically approach a value of unity for large

values of A :1). If _ _ 1 the curves never rise above the ,'alue of unity, llow-

ever, if _... 1 the curves rise from their initial value of zero to a peak value

greater than unity and then (as A ,'D increases) approach the unity asymptote

from above. The analog-v to a second order control system is interesting.

llere, _ is analogous to the damping ratio r_. Further study of tile describing

function reveals tile amplitude of the peak value of N/k and the values of _ and

u (and hence D, M, and k) for which the peak occurs. If equation (10a) Is

optimized with respect to u, it is found that the peak value, N O k, of N/k

occurs when u has the value

: [ i-1
u0 ,/_ . (tt)

General (i.e., independent of numerical values for A, D, and k) curves of

N0/k versus _ and A0/D ( l/u 0) versus _ may be plotted from equations

(10n) and ( I I) and are shown ill Figure ,% These relationships will be used

ill St|bsequt'llt pea'dictions of limit cycle conditions.

l 0
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f Ix)

J¥1,

,-M

o

N/k

,X

Figure 7. Describing functions for Bendix model number 1

nonlinearity (simplified).

Additional insight into the nature and dynamic effect of the nonlinearity's

parameters A, D, and k may be obtained by considering certain limit cases.

Limit Case 1.(Ideal Relay). If the dead zone (D) of the basic non-

lincarity (Fig. 1) is neglected and slope k decreased to zero, an ideal relay

characteristic is obtained where

N = 4_.._I (12)
-A

A diagram of this relationship is shown in Figure 9, setting k = 0.

Limit Case 2 (Relay With Dead Zone). If the dead zone of the basic

nonlinearity is retained but slope k set at zero, a relay with dead zone charac-

teristic is obtained where

This relationship is shown in Figure 1,). Observe that DN/M has a peak value.

This may be found by setting _ = 0 (since k-- 0) in equation (ll) and sub-

stituting u 0 = D/A = 1Aff2"ln equation (12) yielding a peak value of DN/M --

'2/_ _ 0.6366.

II
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N_

18

14

ol
0 0.1 0 :I 0.4 OJl OJ 1.0

12

Figure ,_. Peak value parameters of BendLx model number 1

nonlinearity (simplified).



N-k

Id

1.0.

0.11.

0.0

0.4'

0.2

0

Figure 9.

I I l i * ,A
I 2 $ 4 6

Describing function relation for ideal relay (k = 0)

and preload (k > 0).

T

1.0.

0.8-

G.4-

0.2-

0

Figure 10. Describing function relation for relay with dead zone.

Limit Case 3 (Gain with Dead Zone). If the height M of the basic non-

linearity is collapsed to zero, a gain with dead zone characteristic results

where

N 1 2 (sin.lu + u_) , u <- 1 . (14)
k rr

This relationship is shown in FiT're 11.

13



NIk

1.D

0.8

0A

0.3

0 2 4 6 °

F._L_ure 11. Describing function relation for gain with dead zone.

Limit Case 4 (Preload). If the dead zone of the basic nonlinearity is

coUapsed to zero, a preload characteristic results, yie!ding

N 4u
-- --- -- + 1 . (15)
k 7r_

This relationship is shown in Figure 9 with k ¢ 0 .

Limit Case 5 (Gain Change). If the parameter of M of the general non-

linearity (Fig'. 1) is set equal to zero, a gain change characteristic results,

y ieldi ng

4:

3

:[
!

2

2

?

N
_- = 1 - _, .(sin-lu + u_-l----_) u < 1

= i , U _ i .*'

, (16)

The relation is shown in Figure 12.

The four cases will now be analyzed in detail, considering the above

limit cases [equations (12) through (16)] and the general case modified by

setting m equal to zero [equations (10) ].

Analysis of Case I

The characteristic equation is

14

s3 + co s2 + B'-Ns + A'-N= 0
c

(17)



_._ .......... F_.., _ _._ ....... _, . ,_ ................. _ •

where

_m

4

2-

Figure 12. Describing function relation for gain change,

d. KoW c
I

V

(lsa)

and

_" KlWc
I ' (185)

v

It is readily shown that the stable region of operation, in terms of
parameters AN, BN lies in the first quadrant and is bounded by the real root
boundary (AN = 0) and the imaginary root contour

BI_ = A..ffN . (19)
bJ

C

From definitions (18), the nonlinear locus is seen to be a straight line

through the origin with slope K1/K 0 . These two lines are shown on Figure 13.

Since they canp, ot intersect, limit cycle operation is not indicated. A stable

response i_ indicated if K1/K 0 > 1/w and, if K1/K 0 < 1/w the systemC C'

response will be unstable.

15



_,,_R_, AL ROOT J/

OJ BOUN'Y ,///

_NONLINEAR LOCUS

0,5. _ ,LOPE KI/K0 )

I

0.4,
0_'

o:J/%
| ,/ "-\
|/ ,-o.

1 2 3 4 5 8 7

Figure 13. Case I (Bendix model number 1) -- stability characteristics.

If the pitch axis is chosen as the single-axis about which rotational

dynamics will be studied, the numerical vahes given in Table 1 may be used

as representatives of the LST. With the exception of a_ and a_ , these values
c g

were obtained from Reference 5. The value for _o is obtained by matching
c

the break frequency co [equation (6)] with the break frequency of the second
e

order sy:;._em:

i

_0c = _g0r-_ = 70.7 rad/s . (20)

The value selected for 00 is representative of a bandwidth-limited rate
c

gyroscope and is low enough to indicate the dynamic effect of this degradation.

Using Table 1 values, it is seen that a stable response is indicated, i.e.,

K1/K 0 > 1/_ c

Analysis of Case II

The characteristic equation is

s 4 + gl s3 * g0 s2 _ k 1 Ns 4 k0N -- 0 (21}

16



TABLE 1. LST NUMERICAL VALUES

Parameter

go

gl

H

IGE

I
v

K
0

K 1

k F

_CMG

0

K
1

C

_O
g

col
n CMG

Numerical Value

= K G = 104 (tad/s) 2

141.4 rad/s

610 Nms

5.01_ Nms 2 (3.7 ft lb s 2)

1. 356 × l0 s Nms 2

4.6843 × 106 Nm

1. 1153 x l0 G Nms

6.600 x 103 Nm/rad

0. 707

4.352 x 104 (= o_2n IG - bf)

7. 087× 104 (= 2 _ _OnIG)

70.7 r_d/s

30 rad/s

100 rad/s

17



r

where

and

k0 d. K0K6/,v , (22a)

dQ

k 1 = K 1 KG/I v • (22b)

1
}

The real root boundary is

k0N : 0 (23)

and the imaginary root boundary, in terms of parameters k0N and k N may
be written as I '

kN _'I (24)
0 gl

or, written as a function of the independent argument, frequency (_o),

k0N = _°2 (go " _°2) ' (25a)

kin = gl 0)2 " (25b)

18
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From equations (22), the N-locus is expressed as

[K 1 \
(26)

A limit cycle and its characteristics are indicated by the simultaneous solution

of equations (25) and ( 26), yielding

N = K1KG 0 Ki / (27)

and

(28)

lmmqlmt ._ !

The frequency fl of the indicated limit cycle is determined by system param-

eters go' gl' K0' K1 and has the same value regardleGs of the type of non-

linearity chosen for N. Although tlie value of N is also independent of the

type of nonlinearity, the amplitude A of the limit cycle is dependent on the

relaUon between N and A, e.g., equatiou (10), and (12) through (16).
Equations (23), (25), and (26), are plotted on Figure 14. The simultaneous

solution of equations (25) and (26) is indicated by the lotorsect!on labeled

limit cycle.

Before numerical values are used, some general characteristics may

be deduced. If the nature of the nonlinearity is such that N increao_cs .-von_-

tonically as A increases {curve (1), Fig. 141, then an un._table limit cycle

is indicated. However, if N increases but approaches a limit asymptotically

as A increases, the ll,ii:t cycI_ _ w,.'!l t_ecur only if the asymptote has a value of

klNLC corresponding to the limit cycle {for curve (2), the value is less, so

no limit cycle is indicated]. If N decreases monotonically as A increases,

19





a stable limit cycle will occur as long as the curve of klN versus A begins

at a value greater than klNLc [e.g., curve (3) ]. If the curve remains above

the value of klblLC for all A [curve (4) ], no limit cycle will occur. These

observations lead to an investigation of describing function characteristics for

various appropriate nonlinearities.

Limit Case 1 (Ideai Relay). Since N decreases monotonically as A

increases, a stable limit cycle is indicated with an amplitude [see equation (12)]

A = 4M/N_ . (29)

[N is obtained from equation (27) and frequency

(2s). l

If the numerical values of 'Fable 1 are used,

is obtained from equation

-: l(;. 1707 , (30)

= 9(;.985 rad/s = 15.4357 Hz (31)

if, for example, M is chosen as 0.055, a value of A s = 0.00434 is

predicted. 3 The amplitude NA of tbe assumed sine wave f(x) is NA =

0.07018. The amplitude of 101LC and [01LC of oscillations in 0 and

may be determined from this relationship with the signal x (Fig. I). Assum-

ing the form of equation 13) for x, the amplitude of the 8 limit cycle ] 8 ] LC

and the O limit cycle I 81LC may be approximated by

I(_l A
IL" :: K-" (32a)

1 _ ,_.e

3. Superscripts u and s refer to quantities associated with unstable and

stable limit cycles, respectively.

21
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and

Iol
LC

Usitg equations (32), amplitudes of 101 IX' and 101LC

4. 012:1 x lO -it fad arid 3.,q91 x 10 -9 rail/s, ln0spectively.

arc found to be

I,imit Case 2(Relay With Dead Zone). In this case stable operation

without a limit cycle is indicated if I)N!M .. 2!rr. If I)N M'- 2 r,, both:i

st'lble limit cycle and an unstable limit cycle are predicted, since the curve of

klN versus A rises above the valueof klNi, C toa peakvahle and then falls

I)elow it. A t'ase of academic interest arises when I)N M is l)ret'isely equal

to 2 ,-r. In that cast', a sere\stable lilnit cycle will occur. Using a value of"

M 0.55 and 1)

values of A, :\u
s

0.01<q4 and NA s

tudes are foul, " to be

0.0011 , equation (!:1) may Ix' solved [c.r the two predictt,d

0.1)0114 anti :k s 0.0042, :lrid ampliludes of fix), NA u

0.0679. From etiuation (:12), iI and _!

101u 10-il ULC : l, 0539 × r,,d, 101LC

liinii cvclc nl'i.i_ni-

1.0221 x 10 -s rad/s.

l,imit ('ase :I (Gain With Dead Zone). It is seen from equ-ltion (1.1)

and Figures l' and 14 that an unstable limit cycle will occur if k "- N, and

stable Ol)eration ,viii occur it' k -- N. An example is obtained by settiniz k

It" 1) 0.011 , equation (14) may be solved for the predicted value of A:

_iu 0.0729 l,' ronl equation (:12), 101 u
• " I,(" 6.7:1tl \ 1 0 -t0 rad and

6,5:ii;4 \ 11)_ rad s. .\nlplitude (if l'(x) then becollles

i) 01)1)22, their. A u li.001411 NA 0.02:iti1, 101 u
• ' I_?

I[ll u
l,t" I. '309 t \ Ill -_) r'id s.

It'll u
I,C

NA u 1,17_,_. If I)

l,:l-lf 1'4 \ 10 -II r:ltl, and

20 .

l,ilnit Cast' 4 (l)rt'load). It is aPli:lrenl It-ore eq,.l:llion (15) and I"iltures

9 alld I-I ih:il :i slabh, Iiinil cycle is ilri'diclt'd if k, N :\lid lhat ilnslahlt' Olit, l':i-

lion will or, cur if I, "- N . All ('kanllile of the t'ffect tit" :i ilrt'load t'hal'ai'lt'i'isiil"

llonliilearily is oht:iiiled hy seltinl4 k I , M IT.055. Solviill_ cqiialion (15) for

A , one predicts ..is O. ltll4tl Ill anti N-_i s li. IT7464 , I"1'OIII e(iilalil, lll (,l_),"'>

10i s -1.2i17 x 10 -II rad lind 10i s .1.1:i,'4_ \ 10 -9 i'lill s,
I,(' l.("

2'2



the value of as).mptote N/k = 1 when _ > I (k > M/D). Using the same means

of analysis as used in the preceding cases, numerical examples corresponding

to each of these six conditions are developed. They are summarized with the

results of the numerical examples of the five limit cases in Table 2. Attention

is directed to the case covered by Condition 1 wlmre M = D, k = 1 : This is

the set of conditions on *he nonlinearity that is used in References 4 through 6

and footnote 2 and is reported as causing limit cycles, The analysis contained

herein disagrees with the reported results in that this analysis predicts stable

operation and the absence of any limit cycles.

:C

Analysis of Case III

The characteristic equation is

c g c g c g
V

- N (:_4)
o: ._ K 0 = 0C g "_ i

V

where overbars are used on gains K0 and K 1 to identify them with the system
'_ )of equation (34) rather than Case If. Comparing equation (;I,l_ to equation ('-'11,

one can immediately draw conclusions from the analysis associated with the

system represented by equation (21). Matching the terms,

g 1 = _d "+ Wc g
, (:_sa)

gO _., wc g
, (:_:sb)

k° : _OgO/Iv , (:_5c)

a nd

kl "c '_o +_g K1)''Iv " (:_5,n

24
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-"--_, 7-,_; ,_- ......... _r*_: ,_,¸_- - = _-- -¸¸,_-,-. _ ._ _v .............................

Limit Case 5 (Gain Change). For the anticipated values of m << k,

equatkm (16) is approxinmted by equation (14). It is anticipated that the

results of the analysis of Limit Case 3 will apply approximately to Limit Case

5.

Basic Nonlinearity (Fi_. 1), The effect of varying the basic non-

linearity_s parameters k, M, and D _ill be investigated in detail. An examina-

tion of Figures 7 and 14 yields most of the following information:

Condition t. N _ k _ M/D: Stable operation (no limit cycle).

Condition 2. N ". k -. M 'I)', k '_'0: Two limit cycles; one stable, one

unstable with A u -. A s .

Condition :_. N "- k -. 51 D -. k _* • Stable operation (no lin_it cycle)
"0" " "

('ondition .l.

Condition 5.

('ot_tlit ion 6.

N k "- lXl D: Unstable limit cycle.

N k -. M 1): Unstable limit cycle.

N "- k -. M I)= k,: • Semistable limit cycle.
"0"

Additional information was needed to obtain the inequality relationships

betwet, n ,Xl I) and k_. 0 foreonditions 2, 3, and6. From equation (11), it

is seen that a peak in N 'k versus A /[) can ocettr only when

Of

Since I) A must be less than unity {or equation (10a) to be applicable,

it is seen from equatitm ( I t) that inequality (33a) is meaningless physically.

Also from equation ( It)b), it is seen that t "" 0. To sumn_arize, N K will

have a peak only wht, n 0 . _ .. 1 (k .. M/'D) and will approach but not exceed

O,

_a _Q
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Now, equations (21) through (26) may be used directly for this model.

Hence, it is seen that the effect of 00 -- i.e., a nonideal rate gyro -- is to
g

introduce the possibility of a limit cycle, considering Conditions 1-6 listed

previously. A numerical example is selected using the values in Table 1,

yielding N = 9.69 and _ = 40.64 rad/s. If a nonlinearity of M = D and

k = 1 is chosen, it is again seen (Condition 1) that limit cycle operation will

not occur. The analysis used in Case II and summarized in Table 2 is directly

applicable to this case as well.

Analysis of Case IV

The characteristic equation is

where

s4 (go coggl )s3 + ( cos5 + (gl + cog) * 4 + cogg0 s2 gfl • c_)Ns

co N = o , (36)
g

_P

dl

= KoKG/I v (37a)

and

fl d. K1KG/I v . (37b)

The stable region, in terms of an _N - fin parameter plane, is bounded by

the real root boundary

_N = 0 (3s)

f

26



and the imaginary root boundary

and

(39):

fin = gl _2 (1 + _2/_g2) (39b)

Again, the nonlinear locus is the straight line determined by equation

F

. (40)3N = (K1/K 0) *

(

This is shown in Figure 15. If a limit cycle is to occur, it will have the

characteristics associated with the intersection of the boundary defined by

equations (39) and the nonlinear locus [equation (40)]. Using the numerical

values of Table I to solve equations (39) and (40) simultaneously leads to

N = 2.103 (41)

and

= 40.959 rad/s = 6.519 Hz . (42)

Th.' six conditions listed previously may be used t_ analyze the possi-

bility of limit cycle operation. Again, it may be readily concluded that for

M = D and k = 1, limit cycle operation will not occur. Limit cycle charac-

teristics for othe.- values of M, D, and k may be predicted, however. Examples

are summarized in Table 2.
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Most of the results presented above for Bendix model number 1 have

been confirmed by analogue simulation. 4 The model of Figure 1 was set up on

the EAI 231R-V computer in the Astrionics Laboratory at Marshall Space Flight

Center, The simulation diagram used is shown in Figure 16, and the nonline-

arity used on the computer is shown in Figure 17. This simulation description

is detailed and lengthy because it graphically portrays numerous combinations

oi unusual limit cycles normally found only in textbooks.

koxlO "4

fix) +[10] __

I I .1414

'[10_1l

1.0

Figure 16.

[10511 _.- _ _10- (lo21 /
.__._5 ._T,,Ctlot)l _ . _'"1. r,,tt_i_A -'' /

"'" I -'1 '
Klxi0"-7

Analogue simulation diagram for Bendix model number 1.

Simulation of Case I

Several simulation runs were made to confirm the predicted stable

behavior of the system. The simplicity of the results does not warrant repro-

duction herein, so they are omitted.

Simulation of Case II ,,.

This case provides the basis of the results reported herein anli!_is

described in detail. The tabulated results (Table 2) will assist the reader in

followi,_ the discussio,..

4. The results presented in this section are due to the efforts of Mr. P. tt.

Fisher, Guidance and Control Systems Branch, Systems Division, Astrionics

Laboratory, MSFC, who worked with the author to confirm the analytically

derived results. His contributions are gratefully acknowledged.
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-x(lo2]

.---, _

Figure 17. Analogue simulation diagram for CMG nonlinearity of
Bendix model number 1.

Limit Case 1 (Ideal Relay). A stable limit cycle is predicted and is

confirmed in Figures 18 and 19. In Fi,.mre 18, the limit cycle trajectory is

approached from within (in a state space sense) with x(0) < A s , and in Figurc

19 the limit cycle trajectory is approached from the outside with x(0) > A s.

Hence, the stability of the limit cycle is demonstrated. The steady state

amplitudes of x, i.e., A s , 0 and 0, may be read directly from Figures 18

and 19 and are tabulated in Table 2 for comparison with the predicted values.

Only the value of the magnitude of f(x) varies appreciably from predicted

values because of its assumed (for describing function analysis purposes)

sinusoidal shape. The frequency of the sustained oscillation closely matches

the predicLed frequency (_2) in this case and all other Case II simulations.

Limit Case 2 (Relay With Dead Zone). Both the unstable and stable

limit cycles are predicted ;or this case. The amplitude of A was too small

(i.e., too nearly identical to dead zone D) to be observed, ilowever, the

stable limit cycle was detected and its nature confirmed. A sample run, with

.,,:(,_'. A s, is shown in Figure 20,

Limit Case 3 (Gain With Dead Zone). Because of the close agreement

between analytical and simulation results in other cases, this case was not

s i mula tcd.

3O
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o
* Figure 18. Limit Case 1 (Ideal Relay) simulation, M = 0.055:

x (o) <As .
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l.'i_;ure 19. IAmit ('ase I (Ideal Relay) simulation, M 0.055:

xto) - A s .

lAtnit (,'ase .I (I)reload). This is :ulother vase of a predit'tt, d st:it)h,

limit t'vl'le. Similar to the al)l)roat'h of l,imtt Case i, the l)redit'ted stahh,

limit _'y_,le charat'tevisth's ave cot_fivtnt'd in |.'lKuves :21 and '2'2.

• lie)
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Figure 20. Limit Case 2 (Ideal Relay with Dead Zone) simulation,

= A s"D 0.001i, M = 0.J55: x(0) <
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Basic Nonlinearity

Condition ! (N > k >-M/D). As predicted and indicated in Figure 23,

all initialconditions within the limits of scaling resulted in stable operation.

t 0.2x10_7

o
[mUd

-0.2x10--7

36

I
fix)

Figurc 23.

01

0

-.01 II[ll
a , • , * ---._ t|e)
0 0.1 OJ OA

Basic nonlincari_, simulation, k-- 1, D - M _ 0.011.



Condition '2 (N > k _ M/D > k/_0). In this condition (as in Limit Case

2) both unstable and stable limR cycles are predicted. As in the nature of

unstable limit cycles, it is extremely difficult to maintain their oscillations.

However, Figure 24 contains a good example of an unstable limit cycle main-

tained for several periods before the trajectory escapes to the sustained

oscillation of the stable limit cycle (AS> A u) . In another run (not included in

report), the unstable nature of the limit cyc!c was seen as the states decreased

to zero. The stable nature of the larger amplitude cycle is confirmed in Figure

25 where x(0) > A s .

0.2x 10--4 :

t 0
0

[rMi] ._.O..2x10_ 8

t O.2x10_7

o
(md/d -O..2x 10 -7

0.0_

t o
• -0.0_

O..2

I o
fqR)

-0..,1

. ^ A 1

VVVVV
AAAAAAAAAAAAAAAAAAA,
vVVVVVVVVVVVVVVVVVVV

X^^^44^AAAAAAAAAAAAAAAAAA,
vvvvvvvvvvvvvvvvvvvvvvvvv

Au " .013 Ae ".0_3

Ifl,)lu ". m If(,,|le-.)4

UIUUUUUUUUUUUUUUUUUUUUUUU
1 • . _ _ • _ i I I il i i I I I • : t|e|

0.1 0.2 0.4 0,4 OJI 1.4 1J 1.4 1.0

l"igurc 2-I. Basic nonlinearity simulation, k: 4.95, l)= O. Oll,

A t|M-- 0.275: x (0)-: .
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x 0

-0.2

,2

1
f(xl 0

-.2

^A AA# AAAAAAAAAAAAA

 VVVVjvvvvvvvvvvvv'

 AAAAAAAAAAAAAAAAAAA
VVVVVV_JVVVVVVVVVVVV'

Figure '2,5. Basic nonlinearity simulation, k-- 4.95, I) _ 0.011,

31 ')'_"0._,.,. x (o) ". A s

Condition :l (N " k .. ,M/l) _ k,'_ 0). As predicted, stable operation

ensue:_ (Fig_. 26).
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Figure 26. Basic nonlincarity simulation, k= 0.95, D= M-- 0.011.
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Condition 4 (N _ k > [%1/I)). This case (Fig. 27) provides an unusually

good example of an unstable limit cycle maintaining a sustained oscillation for

a large number of periods before (in this case} the response di;'erges frmn

the limit cyele trajectory.

1104_

0 0
[,odl !

_10-41

;0-7

l
0 o

Ir_sl

_10-7

--.I

t
H 0

-.1
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1
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......... _ .... v v v--v--- v--v--v

_^̂^AAAAAAAAAAAAAAAAAAAAAA AA /
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVl

- AAAAAAAAAAAAAAAAAAAAAAAAAAAI

vvvvvvvvvvvvvv Jvvvvvvvvvvvvv

AAAAAAA A A^^   ^  ,^AA ^AAAAI II
vvvvvvvvvvvvvvvvvvvvvvvvvYvvVlll

-. , , . , , , . L'""_ .... ,. , , ," vl
O O, | O .2 0.4 0._ OJ 1 .O 1-2 1.4 1 .I I J

Figure 27. Basic nonlinearity simulation, k "0,

1) : M 0.011

Condition 5 (N .. k ,- M'I)}. Figuvt' 2_ is an example of an unstahle

limit e vt'ie. 'l'he first run shows the elusive unstable limit t',vt'lt' tl'ait'ctol-y

rapidly divev_ing to :1 stahle l'esl_on_t'. The second 1"1.111sho%vs the traiectory,

just a._ quickly, di\'er_in_ to an unstable response.
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Figure 28. Basic nonlinearity si,alulation, k = 20, D = 0.011,
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1

Condition 6 (N < k < M/D= K/_0 ). This run (Fig. 29) confirms the

predicted behavior of a stable limit cycle and an unstable limit cycle merged

into one, yielding a semistable limit cycle. In this run, x(0) > A u' s and the

system response approaches and maintains the limit cycle behavior. After a

number of cycles elapse, however, the response leaves _e limit cycle tra-

jectory to assume a stable response. Hence, the limit cycle is stable when

the trajectory is approached from outside and unstable when approached from
inside.
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fix)
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Figure 99. Basic nonlinearity simulation, k = 1, D = 0.011,

l_I= 0.257: x (0) > A u's

lJ

lated.

Simulation of Case III

Because of the close relationship to Case II, this case was not simu-

:;!
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Simulation of Case IV

This case should have been confirmed by simulation but was concluded
because of time constraints.

Summary

Because the describing function technique assumes that the input and

output to the nonlinearity are both sinusoidal in nature, it is to be expected

that the actual magnitudes of these transcendental functions will only be approx-

imated by the mathematical estimates. The closeness of the predictions to the

simulation results is surprisingly accurate, considering the shape of the wave-

forms at the output of the nonlinearity. The predicted time periods were

particularly accurate.

ANALYSIS OFSPERRYMODEL(Fig. 2)

A brief (compared to the preceding analysi,3) analysis was made of the

Sperry model that was presented to MSFC in December 1972, The character-

istic equation associated with the model is

vIGE s5 + I _ IGEN s 4 + Iv + 1 + KIN ÷ HK 1 1 s 3

 iN)] "Ko oNo (43)
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where bi represents the CMG nonlinear element (gimbal pivot friction). If

1/k F and N are selected as the two parameters of interest in the limit cycle

and stability investigation, one obtains three stability boundaries. The real

root boundary is

= 0 , (44)

and the boundary at infinity is

6

1/k F = 0 (45)

The imaginary root boundary may be written as

f/2 [ivi G f_ + HK1K 1) f22 -+ HKoK0]/J (46a)1/k F = -I v E - (IvK0

N : I _24 [I K _2 _ H(KoK1 + K1K0)]/j (46b)v v 1

where the Jacobian J of the simultaneous equations obtained from the real and

imaginary parts of equation (4',3) is

J = _ _ IrK 1 f_ _ H(KoK 1 + K1K 0

_ [ivi G _4 _ (irk 0 + HK1K1)q-_ + HKoK0]2 . (46c)

For the general case, the 1/k F - N parameter plane stabili_- plot

takes the form of Figure 30. The region of interest of this figure for limit

cycle considerations is enlarged and plotted on Figure 31. Shown in Figure l0

is a sketch of the describing function relationship associated with the nonlinearity

N of the Sperry model (Fig. 2), where
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(4,O) (3_)

(1.6)
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(oi)

(lO.O) . -4x10-6

(104)

(2O)

Figure 30. 1/k F - N parameter plane -- Sperry model.

N = 4M% / i - (D/A) 2 /TrA , A/D -1 . (47)

If the nonlinear locus N (as a function of A) is reflecied from the describing

function graph onto the parameter plane, it is seen to bca vertical line rising

from (and returning to) 1/k F as A increases positively. Thus if 1/k F >

1.16x 10 -7 (k F < 8.62× 10_), no limit cycle can occur, if 1/k F < 1.16× 10 -7 ,

then ..ero, two, or four limit cycles are predicted, depending on whether the

peak value of ND/M(= 2/7r) intersects with none, one, or both _f the portions

of the complex root boundary. From Table 1 it is seen that the nominal value
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Figure :_1. Limit cycle region of interest on parameter plane --

Sperry model.

of k F is 6600 (l/k F= 1.52× 10 -4 ), indicating a wide marginof safety (for

the numerical value chosen for the system parameters of this model) for

precluding limit cycle operation. For example, if M - lOD- 2.2 "< lO -'_ and

l/k F - l "_ lO -7 , then the lower value of N is O.:lO × 10 -_; (with a corre-

sponding value of |] : 0.57) and the upper value is 1.95 × 10 -6 (and fl _ 1.06}.

Since l) is so small (with respect to unity), the two values of A corresponding

to each value of N are [from equation (47)]

A _ 4M r/,_N , 0 . ( .|,_ ')

i
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Thus tw3 of the four indicated limit cycles have negligible amplitudes (A) and

can be ignored. The other two significant amplitudes, the one corresponding

to N = 0.3 × l0 -6 being a stable limit cycle (A s = 9337, _ _ 0.57) and the

other corresponding to N = 1.95 x 10 -6 being unstable (A u = 1436, _ _ 1.06).

These results were not confirmed by analogue simulation. It is felt by the

author that they are sufficiently straightforward and do not warrant the effort.

ANALYSIS OF BENDIX MODELNUMBER2

An analys_s of Bendix model number 2 was begun. Before it was

completed, the momentum of opinion appeared to swing strongly in the dire:_.tion

of the "Dahl model" (see next analysis section). The author was swept away

with this same enthusiasm and terminated analysis of Bendix Model No. 2.

ANALYSIS OF DAHLMODEL

The model chosen for the CMG and vehicle single-axis dynamics is

shown in Figure 4. The nonlinear relationship (indicated by the symbol N)

between gimbal friction torque T F and gimbal angle 5 is portrayed in Figure

5 and by equations (1) and (2). As in the above analyses, this analysis was

based on using a describing function to represent the nonlinearity N. This in

turn was based on the assumption of a sinusoidal input to the nonlinearity of

amplitude h and frequency 12.

Kuo described this nonlinearity by developing a describing function

[ 11, 12]. Instead of using the straight line approximations conventionally used

in the derivation of many describing functions, he used the actual curved lines

precisely repx'esenting equations (1) and (2). Using the complex notation of

i ,

N = N 1 + iN 2 , (49)
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Kuo obtainedthe following expressions:

and

N1 =- --A
(50)

N2 - --A
(51)

where

u

A
1

4TGF o

1 [(c2 - A) (c1+A)]in [(c2 + A) (C 1 -A)
(52)

and

2

_1 vA
C 2 C 1

+

2 - A2
_/A_J C 2 vA ',fCZ1 - A 2

(5:_)

where

C = i -
l +.

V(TGF i - TGF o)

(54)

and

C
2

=: -- i

Y(TGF i TGF o)

(55)
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where

and

TGF i = - TGF o + (56)

_ (, :.,.,)TGFi TGFo a _ ' (57)

where

a : :_'A TGF ° . (5,_)

Tile author found that Kuo's equations can be simplified considerably by

observing that (:'2 - C 1 and TGF i = _ TGF i, leading to

:[ : /C+A\'I (59)

a nd

,.( :.nl - _ ,/C.._A1 - (6o)

where C :_ C
1"

of the arguments

Alternately these expressions may be rewritten as functions

a and TGFo, leading to
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2TGF° [ 1 In(a+ a__) 2 - 2] (61)71=

and

-B1 = --'7"4TGF°[J a2+a+2(l+(a+l)_-_'_a+_-_-_-_) 1] (62)

Approximations for these curves may be obtained by deriving the asymptotes

for N 2 versus N 1 . The asymptote associated with small values of a Ca << 1)
is

(6:0
N 1 _ 5 T_F o

and the asymptote associated with large values of a (a >> 1) is

(4TGFo)2/3 ? I/3

N2 _ 7r N:/3 " (64)

The latter expression is simplified if one plots the real (N 1) and imaginary

(N2) parts of the describing function on log-log paper:

2
logN 2 = logK + _ logN 1 (65)

where

K = (4TGF°) . (66)
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Hence one obtains a stIaight line with a slope of 2/3 and a y-intercept of K

for one asymptote and a straight line, parallel to the v-axis, for the o_her

asymptote. The effect of variations ill the gimbal bearing parameters TGF °
and _/ may now be seen explicitly.

Let kT be the factor by which TGF ° is increased (or decreased),

i.e. the new value of TGF ° is kT times as large as the former value. Also

let k be the factor by which T is increased (or decreased). Then, examina-
3/

tion of equations (63) and (64) shows the effect of altering the numerical

values of TGF ° and T is to multiply the former values of N 1 and N 2 (of

the describing functions) by the quantity, k2T k .T

Now, a general map of N 2 versus N 1 may be developed for use in

this and future limit cycle investigations for this particular form of nonlinearity.

It is tmiversal in the sense that it permits one to choose any value of TGF °

and y and see its effect on the N 2 versus N 1 map. such as by placing it on

an 1_1, N 2 parameter plane stability map to predict and analyze limit cycle

existence and behavior.

A new parameter is defined:

o" -_ _/ T2GF ° . (67)

Now, a map of N2/a versus N1/a is simply obtained oy pl)tting the two

straight lilies (asymptotes) of equations (63) _nd (64) on Figure 32.

Values of A may also be found from Figure 32 by again resorting to

approximations. For the asymptote associated with relatively large values of
a_

4TGF o

N2 _rA
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Figure 32. Norm.'llized Dahl describing_function locus.

which leads to ml expression for A in terms of N.) g madparameters 3 :lad

TGi.o:

4

Thus for any location on the large n (slanting) asymptote (curve 1, Fig ....

A may be determined for a _iven point by looking at the associated value of

N ° ¢r and using equation (69}. For the range of numerical values used in the

I,ST :malysis, equation (69) has proven to be a fairly good approximation.

|.'or the small a (vertic-iI curve '2 on Fig. 32] asymptote, \alues of

A arc found by approximating equation (61} with a power series and truncating°

Let the n:_turnl lopan'ithm term, (a , \_)_, be approximated l)ytim term,

2a _ + 2a _ 1 . (70)
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Thena power series expansionof In t is

ln_ = 2 I -1 + _1 ! -1 +
3

2a(a + 1) 2[ a(a + 1)13aX+a÷l ÷ _ a2+a+l
÷ ... . (71)

Combining equation (71) with equations (61) and (51) leads to an approximation

for A as a function of N2/a :

i _

For LST numerical values, this turns out to be a poor, but barely acceptable,

approximation. The problem in approximations arises, for LST numerical

parameters, because a difference between two nearly iden%cal numbers is

required in equation (61).

Finally, equations (50), (51), (61), and (62) are used to determine

the transition curve connecting the two asymptotes. The describing function

plot of Figure 32 may now be used in conjunction with a stability contour, such

as will be developed in the next section, on an N 1, N 2 parameter plane. If it

is redrawn on a transparency it may be used with a stability map (as will be

demonstrated on Figures 34 and 35) without redrawing it each time by dis-

placing it in both the N 1 and N 2 direction by an amount equal to k2T kT "

(It has been redrawn on Figures 34 and 35 for the sake of clarity in this paper.)

As in the previous analyses, the possibility of limit cycle existence will

be determined. When it is predicted that one exists, its characteristics will

be determined.

The model shown in Figure 4 may be described in conventional control

system form (closed loop transfer function) as
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0 K1

c = IvIGE s_ _ IvKpS _* Iv(N* K1) s"4 KIHA I s* KIHA 0

The characteristic equation associated with this model is

where

IG F sa p 4 KIKI s 4 K0K I
0

(74)

IIA
0

K
0 I

V

(75)

a nd

HA
1

K 1 _- • (71;)I
V

The system described by Figure 4 appears suitable fur describilg

function analysis because it is low pass and the systenl parameters are assunwd

time invariant. A describing function N is used to represent tile nonlinearity

(herein assumed to be CMG gimbal friction). Recall that for a limit cycle to

occur, _t is required that all characteristic equation (74) roots have negative

real parts except for one pair which must be purely imaginary roots. This

condition is determined mathematically and, for ease of visualization, is

portrayed graphically. In the latter case, two adjust,flllc parameters are

selected, NI anti N._. A correlation bctv,'een these parameters and tilt, roots

of file characteristic equation is determined by mapping the stability contours

from tile complex s-plane onto the selected (Nl, N,) parameter pl.me. For

the ,_ystcm under considl'ration, only one such stability I_eundary exists and is

easily found.
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Analysis of equation (74) indicates the absence on the N1, N 2 param-

eter plane of either a stability boundary associated with the real roots of the

characteristic equation or the boundary at infinity.

The simultaneous solution of the nonlinear relation of equations (50)

and (51) and the purely imaginary root boundary yields the condition for a

limit cycle, assuming the indicated solutionoccurs adjacent to a stable region

(true in thiscase). This condition is readily apparent on the parameter plane

as the intersection (ifone occurs) between the purely imaginary root boundary

and the nonlinear locus o_ equations (50) and (51). From thispoint of inter-

section the frequency (_) and magnitude (A) of the indicated limit cycle(s)

may be determined as functions of the characteristics of the nonlinearity and

of the adjustable parameters. Further, the behavior of each limit cycle when

a small perturbation is applied to itsamplitude and, hence, the nature of

limit cycle stabilityalso is apparent on the parameter plane.

Turning to the characteristic equation (74) and setting s = if_,one may

obtain the real and imaginary parts of the equation:

-NI_ : - (KoK I - KI_ + IGEI24) (77)

and

-N2_ = - (K1K I - K _) (78)p

which yields the Jacobian

J = t23 > 0_f/ > 0 . (79)

Solving equations (77) and (78) for the purely imaginary root boundary,
one obtains

IGEf/4 - KI [_ + K0K I

N1 - (8o)
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and

-(K fk2
p - K1K I)

N 2 = .q • (81)

This boundary (cross-hatched curve) is sketched on Figure 33, _he nature of

the Jacobian indicating where the stable region lies. If the nonlinear locus of

the describing function defined in equations (50), (51), (61), and (62) is also

drawn on the same N 1 - N 2 plane, it is seen that several conditions can occur,

depending on the numerical values selected for the system parameter s. For a

fixed set of values for IGE , K0, K1, KI, Kp, either no intersections (or predicted

limit cycles) occur (Fig. 34a) or two intersections occur (Fig. 34b). In the

latter case one limit cycle is stable (with indicated amplitude and frequency

A s and f2s, respectively) and one is unstable (A u, p u). In that case, if the

amplitude (A) of the assumed simusoidal input to the nonlinearity is always
u

lc,_s than A , the output of the nonlinearity will asymptotically approach zero.

However if A ever exceeds the value A u (such as by an initial condition),

then A will approach A s (and $2 will approach f_s). In the limiting case

where the curves osculate but do aot intersect, a single sernistable (orbitally

semistable) limit cycle is indicated. To interpret these phenomena physically,

one may refer to Figure 4. The input to the nonlinearity is 5. For describing

function analysis, it is assumed to be sinusoidal and of the form of equation
(3), i.e.,

6 = A sin f2t . (82)

The output of the nonlinearity, Tf, is then assumed to be of the form

Tf _ N5

: (N 1 + iN,,). 5 (83)
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NOTE:

Figure 33,

\
IT/diLl FIIOION I

K I K!

1 Kp

_'_T' _2" _"_3 FOUND FROM IEQUATiONS SHOWN.

N 1 - N 2 parameter plane -- Dahl model.

4
N2

| ULC
/ /

'_- \

N 1

|LC: STARLE LIMIT CYCLE WITH

AMPLITUDE As • FMEQ. _s
STAIIILITY CONTOUR: xxxxxxxxxxxxxuxx_,x

N1

DESCRIBING FUNCTION ¢OtITOUR: ;JLC: UNSTABLE LIMIT CYCLE (AVo _ u)

a,
N 1 - N O. parameter plane w_th b. N 1 - N 2 parameter plane with

no limit cycle, two limit cycles.

Figure 34. Dahl model.
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N1A sini2t + N2A cos_2t

t

= A'] Nz1 +N 22 sin (at + _) , _ = tan -1 (N2/N 1) . (83)

( C onc luded)

This is in the form of equation (4). Using equations (82) and (83) with the

relations shown in Figure 4, one may now obtain t_e values of the other vari-
ables (e.g., 0 and O) when T _ 0 and a limit cycle :.s predicted.

C

Typical numerical values of LST were altered slightly, because of the

passage of time between analyses, and are shown in Table 3 (slightly different

from Table 1). They are described in Reference 13.

TABLE 3. TYPICAL NUMERICAL VALUES FOR LST

P ara meter

A
0

A 1

H

IGE

I
V

K
P

TGFo

3'

Numerical Value

2 x 104 (rad-s)-t

3 × 103 (rad)-I

271 Nms (200 ft-lb-s)

5. 012 Nms 2 (3.7 ft-lb-s 2)

1.354 × 105 Nms 2 (10 s ft-lb-s 2)

1.354 × 104 Nm (104 ft-lb)

:]79 Nms (280 ft-lb-s)

£.271 Nm (0.2 ft-lb)

1.477 × 105 (Nm rad) -t I2 × 105 (ft-lb rad)-l]
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The curve for the purely imaginary root boundary is found by substitut-

ing numerical values from Table 3 into equations (80) and (81). If Table 3

values for ? and TGF ° are used for the nonlinear locus representing the

friction [equations (50), (51), (61), and (62) ], it is seen that no intersections

between the two curves wiil occur (Fig. 35). (This is the case portrayed in

the sketch of Figure 34a. ) llence no limit cycles are predicted and stable

operation is predicted.

7x103

Sxl03

3x103

2x103

lx103

700

500
4OO

3OO

2OO

100

7O

6O
4O

3O

2O

;

lO!

0.1

t
UNSTABLE REGION

"------ _ / [S_] [6.0)

l ,,"'I
_PURE IMAGINARY ROOT STABLE REGION •

STABILITY BOUNDARY 1 (Sxl0 -6),* S I

NOTE: /

VALUES OF _"_ SHOWN IN [ ] / I

:_ L::SBOFNGAFUS_ TNI:_)11MPTOTE (Ixl0_

-"DESCRIIING FUNCTION LOCUS

I
I(lx10 -5)
I

I(6x10--6)

Xlxl0-S)

)(6xlO -7)

)(lx10-7)

(6x10-4)

13' N1

Figure 35. N 1 - N 2 parameter plane -- Dah! model, T = 1.477 x 10 s .

If the asumptotes are also plotted on Figure 35, one sees that, if during

the design evolution ? and/or TGF ° are increased, the case shown in the

sketch of Fig_we 3_b will occur. In that case two limit cycles are predicted,

one stable and one unstable. One such example is shown in Figure 36, where

_/ is increased to a value of 1.477 × 10 e. The unstable limit cycle has a

predicted amplitude of 1.0 × 10 -_ rad and frequency of oscillations of 2.8 rad/s.

The stable limit cycle amplitude is 2.1 x l0 -s rad with a frequency of oscilla-

tion of 5.2 rad/s. Practically, this means that if A has an initial value that

is gr..'ater than 1.0 × 10 -_ rad it will always converge to a value of 2.1 × 10 -'_'

(the s*a,Ae ,mit cycle), tlowever, it' the value of A is never permitted to

exceed 1.n _ 10 -_ rad (the unstable limit cycle), no limit cycle operation will

occur and the system will be asymptotically stable.
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The above predictions were confirmed with a simulation on an EAI

231R-V analogue computer, again through the efforts of Mr. P. H. Fisher.

Figure 37 shows the stable limit cycle results, yielding measured values of

1.5 x 10 -6 rad and 5.2 rad/s for the amplitude and frequency of oscillation of

the gimbal angle (5). Figure 38 shows the unstable limit cycle results, with

values of 2 x 10 ..7 rad and 2.4 rad/s for gimbal angle amplitude and frequency,

respectively. These values are sufficiently close to confirm the predicted

value within the limits of describing functions analysis assumptions. A sum-

mary of the analytical predictions and simulation results is given in Table 4.

Hence for the single nonlinearity considered, i.e., the output gimbal friction

relation developed by Dahl, no limit cycle is predicted for presenCy esti-aated

LST numerical parameters. However, if the design characteristics of the LST

CMGs should allow numerical values of T and/or TGF °substantiailv larger

than those indicated in Table 3, two limit cycles will occur, ol_e _tablc, oue

unstable. A more detailed simulation effort has been described by G. S.
Nurre. 5

This analysis has considered neither the effect of nmltiple nonlinearities

nor the effect of sampling (such as will be pci'formed by a,1 or, board digital

computer). A sampled data analysis is now underway to consider the latter.

CONCLUSIONS

For nu,ucri,:ai _alues considered to be representative of the LST and its

CMGs, analysis indicates (and analogue simulation confirms) the absence of

limit cycle bahavior due to the CMG output gimbal friction nonlinearity.

Because of the present early stage of development of the LST, it is expected
that the numerical values (and indeed mathematical characterization of CMG

friction models) will change. Because of this, a wide spread of numerical

values of actual variations in friction parameters has been examined. Further,

a general mchnique of analysis of such system has been specified and used in

great detail. This technique should be applicable to future alterations in the

LST. As such, it provides a design tool for enhancing the efficiency of large

scale computer simulation by predicting dynamic responses (thus aiding in the

time-consuming debugging process) and in helping to select numerical values

to be incorporated in the simulations. While the Dahl model has been widely

accepted by those involved in CMG dynamics, the author respectfully points
out that not too long ago the model termed herein as Bendix model number 1

was widely accepted (at least at MSFC).

5. G. S. Nurre, An Analysis of the Dahl Friction Model and its Effect on a

CMG Gimbal Rate Controll_r_ S&E-ASTR.A, Unnumbered report, MSFC,
Oct. 18, 1973.
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Figure 37. Dahl model simulation, 7 ": 1.477 _. 10';.

The analysis of Bendix model nun_ber 1, in particular, is quite dctaih'd,

perhaps to tilc point of inciting horedom, llowevt, r, not only is tht' _t'llt'r:ll

analysis ll't'hniqtte presented hut also a study of the effect of i_aranlett'r v:lria-

tions is I)rescntt'd. Also, from an academic vi¢wl,oint, it is intt'rt'sti,l_ (to

some) to set' actual t, xamplt's _f such usually obscul'e limit cycle I)t,|l:l_, i_)l" as

orbitally scmistable limit cycles.
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Figure 38. Dahl model simulation, ? = 1.477 x l0 s .

TABLE 4. SUMMARY OF DAIlL MODEL RESt LTS

(Nm rad)-t [ {It-lb r-d) -tl

1.477 (2"( IO _)

1.477 (2 " 10 s)

1.477 (2" 10 I)

Limit ('yele

._o

( nstahle

Stable

.t_nalytlcal Predictions

A (r.d) S_(tad,s)

2._

5.2

.'¢,imulut mn Results

fl

A (rad) rad s]

2.0x I0 -T 2.4

!.5 x I0 _ 5.2

Olrad) 3(rad s_

I.(_ x I,V s -1 " bi-"

7.5 _ IO "? 3 _ I0 "_

i;;l

i
I
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